
Chapter 1 

Thesis overview and literature survey 

This Thesis is concerned with the development of technologies for product quality monitoring 

in the batch manufacturing of high value added goods. Two kinds of products are considered: 

those whose “quality” is determined by chemical/physical characteristics (e.g., viscosity, 

concentration, …), and those where surface properties (e.g. texture, roughness, …) define 

“quality”. Two main issues are investigated: i) the development of a strategy to design of soft 

sensors for the online estimation of product quality and the realtime prediction of batch length 

in batch chemical processes; and ii) the development of a strategy to design of automatic 

systems for surface characterization in the manufacturing of hardware devices. Tools from 

multivariate statistical analysis (namely, projection to latent subspaces) are used to develop 

the proposed technologies. 

In this Chapter, after an outline of the aims of the Thesis, the concepts of quality and 

statistical quality monitoring are briefly reviewed. Then, a survey will follow on the use of 

multivariate statistical tools for statistical process control, with particular reference to batch 

processes, for which several challenges are still open for investigation. A roadmap to the 

reading of the Thesis will conclude the Chapter. 

1.1 Aim of the project 

Ensuring the conformance of the final product to a predetermined standard is of vital 

importance in high value added manufacturing in order to achieve the success in today’s 

increasing competitiveness of the global market. However, satisfying the requirements of the 

customers and meeting reproducibility and high quality of the final product is particularly 

difficult in most processes. Furthermore, most of the manufacturing processes are inherently 

multivariate, and quality itself is the multivariate expression of a plurality of indices that are 

related to process, possibly subject to visual features, and sometimes to personal judgement as 

well. The aim of this project is the development of multivariate statistical tools that enable to 

monitor the product quality in batch manufacturing systems in a systematic manner, in such a 

way as to analyze quality through the information embedded in process data or in images of 

the product. The proposed techniques are applied to different case studies:  
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the development of a strategy to design multivariate statistical soft sensors for the 

estimation of the product quality and for the prediction of the batch length in batch 

processes; 

the development of a strategy to design an automatic method for the monitoring of the 

surface quality of a product through multiresolution and multivariate image analysis. 

The systems for the realtime estimation of product quality and for the realtime prediction of 

the batch length are applied to the case of a real-world industrial process for the production of 

resins by batch polymerization. This case study demonstrates that the proposed techniques are 

effective strategies to help the online adjustment of the process recipe when the quality 

deviates from the nominal conditions and before the final product is affected. Furthermore, 

these are a valid support for the organization of the production and for the scheduling of the 

use of the equipment and the coordination of the labour resources.  

The novel methodologies developed for the automatic characterization of the surface quality 

by image analysis are applied to the case of the surface monitoring in the after-

photolithography inspections that are carried out in the manufacturing of integrated circuits. 

In detail, a fully automatic system for the assessment of the surface characteristics of a 

semiconductor is developed to perform the monitoring of both the surface roughness and the 

surface patterns.  

To sum up, the main contributions of the PhD project are:  

the development of innovative technologies for the online estimation of the product quality 

in batch processes;  

the non-conventional application of latent variables subspace methods for the prediction of 

the length of batch processes;  

the development of new methodologies for the multiresolution and multivariate systematic 

monitoring of the product quality from images of manufactured products.  

1.2 Introduction to quality and statistical quality monitoring 

The quality movement traces its roots back to the late 13th century, when European craftsman 

began organizing into “guilds”, responsible for suggesting strict rules on the product and 

service quality, for adopting inspection committees, and for promoting special marks for 

flawless goods. Later, the industrial revolution followed this example. However, it was only 

after World War II that the idea of the “total quality” was introduced, and the notion of 

“inspection” extended to process technology improvement. Nowadays, “quality” embraces 

the entire organization of a company and, in the increasing competition of the global market, 

it is of critical importance that every process can manufacture high quality products with 

maximum yield. Meeting quality requirements is especially difficult when products consist of 

large numbers of components, or when processes consist of dozens, even hundreds, of 
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individual steps (Seborg et al., 2004). For example, batch processes for chemical 

manufacturing and microelectronic fabrication are carried out through a series of operating 

steps, where quality in each stage is strictly related to the quality of the other stages and 

heavily influence the final product quality. This results in the need of quality-oriented 

technologies. On October 1st
, 2008, during the meeting on the “Future of quality” of the 

American Society for Quality (Milwaukee, WI, USA), it was pinpointed that the 21
st
 century 

technologies are one of the key forces that will shape the future of the quality 

(http://www.asq.org/index.html). This PhD Thesis inserts in this scenario, developing 

automatic techniques for the realtime quality assessment in the high value added productions.  

The concept of quality is still not completely defined. In the common sense, quality is the 

degree of excellence of a product, a process, or a service. From the engineering point of view, 

quality is assumed to be a measurement of the conformance to a required standard, to 

guarantee high performances in terms of reliability, serviceability, durability, etc… 

(Montgomery, 2005). Namely, the purpose of quality is not only to force a product or a 

process to respond to predetermined features in order to reach a target or a nominal value in 

terms of physical, sensory, or time-oriented characteristics (quality of design), but also to 

improve the product and the process performances in order to reduce the defectiveness, the 

scraps, the costumer complaints, the rates of waste and of rework (quality of conformance). 

Therefore, the aim of quality monitoring is not only to monitor the quality of design, but also 

the quality of conformance (Montgomery and Runger, 2003). In summary, quality is inversely 

proportional to variability.  

Since the variability is an inconsistency that introduces unevenness and determines the major 

sources of poor quality, the improvement of quality can be reached through the decrease of 

the variability in products and processes. To reduce the variability, one of the most effective 

tools is the systematic use of statistics. In his pioneering work, Shewhart (1931) showed how 

the fundamental steps of the engineering quality control (i.e.: specification of the process 

goals; fabrication of in-spec products; and tests on the fabricated devices) can be traced by 

statistical quality control (SQC). SQC fixes (statistical) limits on the state of the production, 

and improves the uniformity of the quality, assessing the agreement of the product/process to 

an optimal reference. SQC has gained increasing interest both by the research community and 

by the industrial one (Hare, 2003).  

It should be acknowledged that quality is a synopsis of multiform attributes, depending on a 

composite combination of related parameters, which are often not accessible by common 

instrumentation hardware, sometimes not even measurable or quantifiable. Otherwise stated, 

quality is an inherently multivariable attribute. Furthermore, quality is often related to the 

values of all the process variables that can be measured during the product manufacturing. On 

this basis, classical SQC has moved a step forward to statistical process control (SPC) (Geladi 

and Kowalski, 1986; Wold et al., 1987; MacGregor et al., 1991; Jackson, 1991). SPC unveils 
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the multivariate nature of a system and, furthermore, it can relate the quality parameters to the 

conditions in which the production process is carried out (Kresta et al., 1991; MacGregor et

al., 1991).  

1.3 Multivariate statistical techniques for process monitoring 

Generally speaking, SPC is a field of technology expansion, whose philosophy is to supervise 

the process performances over time for emphasizing the anomalous events leading to the 

degradation of the quality specifications (Kresta et al., 1991; Romagnoli and Palazoglu, 

2006). Therefore, the goal of SPC is the quick and reliable detection of the existence, the 

amplitude and the time of occurrence of the changes that cause a process or a quality feature 

to deviate from a prescribed standard in the manufacturing of a product. SPC supports this 

task (MacGregor et al., 1991; Kourti and MacGregor, 1995; Seborg et al., 2004) and 

facilitates to quantify the probability in observing a process behaviour that does not conform 

to the expected one (Nomikos and MacGregor, 1994; Flores-Cerrillo and MacGregor, 2002 

end 2003; García-Muñoz et al., 2003). Consequently, SPC not only provides underlying 

information on the state of a plant or of a product, but also assists the operators and the 

process engineers to remedy a process abnormality (fault1). The results are safer operations, 

downtime minimization, yield maximization, quality improvement, and reduced 

manufacturing costs (Chiang et al., 2001; Edgar, 2004).  

Since in the industrial practice every process exhibits some variability regardless how well it 

is designed, operated, and instrumented, it is important to discriminate between the common 

cause (natural and random) variability, which is a cumulative outcome of a series of 

unavoidable phenomena, and the abnormal (non-random) variability triggered by assignable 

causes, such as process changes, faulty conditions, errors, etc… The common cause 

variability is a sort of “background noise” that should operate with only “chance causes of 

variation” (Montgomery, 2005). This allow processes/products to stay in a state of statistical 

control. Unfortunately, other kinds of variability may occasionally be present in the output of 

a process, arising form improperly maintained (or controlled) machinery, operator errors, 

defective raw materials, unavoidable events, etc… The assignable causes lead to unacceptable 

levels of process performances or product defectiveness, and determine an out-of-control 

state. SPC helps investigating what does not work in a process and assists in undertaking the 

corrective actions before non-conforming products are manufactured. Therefore, monitoring 

is not only understanding the status of the process, but also the possibility of controlling the 

product quality. Direct inspection of the quality is usually impractical or, at least, delays the 

discovery of the abnormal process conditions, because the appearance of the defects in the 

                                                 
1 A fault is an unpermitted deviation in a system (i.e.: process changes, disturbances, problems to sensors or actuators), which 

is often not handled adequately by process controllers.  
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final product takes time. However, information about the quality is encoded in the process 

variables, which are often measured online, frequently and in an automatic fashion, thus 

enabling the refinement of the measure information and the inference of the product quality 

(Kresta et al., 1994; Çinar et al., 2003). In this way one can examine both the process 

performance and the product quality, ensuring repeatability, stability and the capability of the 

process to operate with little variability around an assigned target (i.e., the nominal 

conditions). Accordingly, SPC is a powerful tool to achieve process stability and improving 

process capability (Montgomery and Runger, 2003).  

Traditional monitoring methods consist of limit sensing and discrepancy detection (Chiang et

al., 2001). The limit sensing raises an alarm if the state of the observed system crosses 

predetermined thresholds, while the discrepancy detection raises an alarm depending on 

model accuracy. The limit sensing imposes some limits to the observations of every process 

variable, but ignores the relation of each variable with the other ones (i.e., it is univariate).  

To detect the departures from a prescribed state of statistical control, control charts can be 

used. Their use is entrusted because they are proven techniques for improving productivity, 

are effective in defect avoidance, prevent unnecessary process adjustments, and provide 

diagnostic and process capability information. In statistical terms, the control charts are 

hypothesis testing techniques2 that verify if a process/product is in a state of statistical control. 

The in-statistical-control condition is the null hypothesis3 to be proved. The null hypothesis is 

verified, with a certain degree of uncertainty (level of confidence or significance) when the 

status of the observed phenomenon stays in proximity of the nominal conditions. Being the 

nominal conditions identified by the process average conditions, and the amplitude of the 

confidence limits identified by the common cause variability, moving the limits farther from 

the average conditions (rising the degree of uncertainty) decreases the risk of type I error4 

(false alarm), and increases the chance of type II error5 (scarce sensitivity).  

The procedure suggested by Kourti (2003) for statistical process control develops through: 

selection of the most representative observations (process data) from an historical database 

to the purpose of the model building. The selected observation should identify the so-called 

normal operating conditions (NOC) ;  

pre-treating of the input data to facilitate the statistical analysis;  

                                                 
2 The statistical hypothesis testing is a methodology to make statistical decisions based on experimental data, almost always 

made rejecting, or failing to reject a null hypothesis.  
3 The null hypothesis is a statement about a plausible scenario which may explain a given set of data and is presumed to be 

sufficient unless statistical evidence. The null hypothesis is tested to determine whether the data provide sufficient reasons to 

pursue some alternative hypotheses.  
4 The type I error (or -error, or false positive) is rejecting a correct null hypothesis, i.e. a false alarm. It occurs every time an 

out-of-control state is called by the monitoring charts when there is no assignable cause.  
5 The type II error (or -error, or false negative) is failing to reject a null hypothesis when it is false, i.e. an inadequate 

sensitivity. This is the risk that a point may still fall within the confidence limits of the monitoring charts when the status is 

really out of control.  
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model calibration;  

checking the “observability” of the model, to test the efficiency of the monitoring model 

through a validatory procedure;  

checking the performances of the monitoring model in the diagnosis of the special causes 

that affect a process or a product and determine a detriment of the quality or a loss of  

process performances. 

In typical industrial scenarios, hundreds, if not thousand of process data are available every 

few seconds, being collected online from process computers and stored in the supervision 

systems (Nomikos and MacGregor, 1995a; Nomikos, 1996). These data are characterized by 

spatial correlation (i.e. relations among variables) and serial correlation (i.e. relations among 

measurement of the same variable taken at different times or locations). Spatial correlation is 

due to the fact that several process variables are usually sampled throughout the process, and 

the response to a certain assignable cause affects several process variables. This means that 

the process variability is usually restricted to a much lower dimension than the one related to 

the number of variables collected in a process. The process data are serially correlated, as 

well, because of the relatively small sampling intervals. Furthermore, missing data and noise 

are often present. The need to handle correlation, noise, and missing data and the requirement 

to keep the dimensionality of highly correlated data to a reasonably low level calls for the 

calibration of multivariate statistical models, such as principal component analysis (PCA) and 

projection to latent structures (PLS, or partial least squares regression). PCA and PLS are 

data-driven methodologies with computationally non-expensive input-output model structures 

(Kresta et al., 1994; Cinar et al., 2003), whose frame is a typical black-box representation that 

derives from the historical data collected during experiments or industrial practice. For the 

purpose of SPC, PCA and PLS can be used to analyze process data, and to develop inferential 

models or statistical process control schemes (MacGregor et al., 1991). Both PCA and PLS 

extract the most important, systematic information hidden into process data, usually 

assembled in bidimensional (2D) matrices (observations×variables), and compress it through 

algebraic concepts, in such a way that the information is found in the correlation pattern rather 

than in the individual variables’ signals (Eriksson et al., 2001). Hence, massive volumes of 

highly collinear and noisy variables can be examined by projecting them onto a subspace 

made of few fictitious variables, called principal components (PCs) or latent variables (LVs), 

which explain the direction of maximum variability of the data and contain the greatest part of 

the relevant information embedded into data. Therefore, both methods are concerned with 

explaining the variance and covariance structure of a dataset through linear combinations (i.e.: 

PCs and LVs) of the original ones. This is the reason why PCA and PLS models are linear 

correlative representations, but not causal models. Note that PCA and PLS have slightly 

different meanings. In particular, if the case is interpreting and modelling one block of data 

(e.g., process data), PCA is the proper solution (Jackson, 1991; MacGregor et al., 1991; 
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Kourti and MacGregor, 1995). If it is necessary to investigate the relationship between two 

groups of data (e.g., process variables and quality variables) to solve a regression problem, the 

proper method is PLS, which can estimate or predict some response variables from a 

collection of predictor variables (Geladi and Kowalski, 1986; Höskuldsson, 1988; Kresta et 

al., 1991; Burnham et al., 1999; Wold et al., 2001). In summary, the former method 

maximizes the variance captured from the input data, while the latter maximizes the 

covariance between the predictor variables and the predicted ones. Although in this Thesis the 

main interest is in process engineering applications of multivariate statistical methods, several 

applications of these techniques are reported in the most diverse fields. An incomplete excerpt 

of some recent applications outside the process engineering community is reported in Table 

1.1.  

Table 1.1 Topics of recent papers on applications of multivariate statistical 

methods in non-process engineering areas. 

Reference Area Topic 

Dokker and Devis (2007) biology sunflower and maize root cell structure study 
Giri et al. (2006) biology examination of the metabolism of nut alkaloids in mice 
Škrbi  and Onjia (2007) biology detection of microelement content of wheat 
Viñasa et al. (2007) geology volcano surveillance 
Harrison et al. (2006) medicine texture analysis of non-Hodgkin lymphoma 
Lee et al. (2008b) medicine citoxicity of substances for cancer treatment 
Tan et al. (2005) medicine persistence of pollutants in adipose tissue 
Whelehan (2006) medicine detection of ovarian cancer by proteomic profiles: 
Übeyli (2007) medicine automated diagnostic system for breast cancer 
Giordani et al. (2008) energy electronic-nose for bio-diesel sources identification 
Kirdar et al. (2008) bioprocessing supporting key activities for bioprocessing 
Trendafilova (2008) mechanics vibration based damage detection in aircrafts wings 
Durante et al. (2006) food processing fragrance sensing and taste estimation 
Apetrei et al. (2007) food processing fragrance sensing and taste estimation 
Marín et al. (2007) food processing fragrance sensing and taste estimation 
Arvisenet et al. (2008) food processing fragrance sensing and taste estimation 
Clément et al. (2008) food processing fragrance sensing and taste estimation 
ElMasry et al., (2008) food processing defects detection 
Quevedo et al. (2002) food processing food classification and characterization 
Doneski et al. (2008) food processing food classification and characterization 
Schievano et al. (2008) food processing food classification and characterization 
Viggiani et al. (2008) food processing food classification and characterization 
Liu et al. (2008) food processing evaluation of aging or maturity 
Qiao et al. (2007) food processing quality survey 
Kim and Choi (2007) image analysis face recognition 
Liu et al. (2007b) image analysis mineral processing 
Liu et al. (2005) image analysis wood manufacturing 

 

Finally, multivariate statistical techniques can be extremely useful in the analysis of data from 

non-conventional sensors (e.g., cameras) and are applied to the field of image analysis as 

multivariate image analysis (MIA; Geladi, 1995), either in some of the classic fields of 

chemical engineering, such as plastic material processing (Liu and MacGregor, 2005), steel 

industry (Bharati et al., 2004; Liu et al., 2007a), and furnaces flames control (Szatvanyi et al., 
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2006), or in other applications for high value added productions, namely wood manufacturing 

(Bharati et al., 2003), snack-food statistical quality monitoring and control (Yu and 

MacGregor, 2003; Yu et al., 2003) and food processing and packaging (Du and Sun, 2004; 

Brosnan and Sun, 2004; Du and Sun, 2008).  

Because batch manufacturing is the main focus of this project, in the following subsections a 

survey on how the SPC is applied to batch processes is presented.  

1.3.1 Multivariate statistical process control for batch processes

Batch and semi-batch processes are used to manufacture high value added goods, such as 

specialty chemicals and biochemicals, polymers, composites, pharmaceuticals, and materials 

for food, agriculture or microelectronics. With respect to their continuous counterpart, batch 

processes can accommodate multiple products in the same production facility, are flexible, 

easy to set up, and relatively simple to carry out, because the processing recipe usually 

evolves through a sequence of elementary steps performed in a assigned order to yield 

relatively small volumes of product with specified quality. Furthermore, for a batch process to 

be set up, it is often sufficient to have limited fundamental knowledge of the underlying 

process mechanisms.  

Although the batch manufacturing of a product is performed according to a given  recipe, the 

product quality may show great variability, if no corrective actions are taken, and it is often 

difficult to manufacture multiple consistent products in accordance to strict requirements. In 

many instances, to meet the quality specification, only the batch duration is adjusted. 

Sometimes, the operating recipe can be corrected in real time in addition.  

There are several reasons that make batch monitoring and control an hard task (Seborg et al., 

2004): the time varying characteristic of batch processes; their nonlinear and irreversible 

behaviour; lack of adequate mechanistic and fundamental models; lack of online sensors, 

sensor inaccuracy and infrequent sampling of quality indices; existence of constrains; 

unmeasured disturbances (i.e.: operators errors, fouling, impurities of raw materials, etc…).  

The data routinely obtained online from batch processes are not only multivariate in nature, 

but also nonlinear, highly auto-correlated and cross-correlated6, and time varying. The time 

variation implies that a new dimension should be taken into account in the data, i.e. the time. 

Namely, the data from batch processes can be collected in three-dimensional (3D) matrices 

(observations×variables×time) that hold both the variation between batches and the variation 

in time within a batch. PCA and PLS models are linear correlative models, which are valid 

when the correlation structure of the data remains unchanged in time. However, the 

correlation structure of the data usually changes during a batch run (Kourti, 2003). Moreover, 

                                                 
6 The auto-correlation identifies repeating pattern during time or along the space in a periodic signal. The cross-correlation is 

a measure of similarity between signals.   
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it changes not only within a batch, but also between batches, due to process changes, plant 

maintenance, sensor drifts, seasonal effects, etc… For this reason the multivariate statistical 

techniques evolved to embody not only the multivariable and correlative structure of the data, 

but also the nonlinearity and the time-varying nature of the batch data.  

To face the problem of time variation and change in the correlation structure of the data  

several methods have been suggested. Basically, four classes of approaches are highlighted in 

the literature:  

nonlinear multivariate statistical methods, which are the traditional multivariate statistical 

techniques modified in a nonlinear manner and tailored for the nonlinear nature of the 

input data and the nonlinear correlation structure of the data;  

multiway models, in which time is considered as an additional dimension of the data and 

the variability during time evolution can be assessed;  

multiphase models, which split the data in series of segments in which a steady correlation 

structure of the data is preserved;  

preliminary treatment of the data, in such a way as to rectify the inputs to a multivariate 

statistical method, either by decomposing the data signals in different resolution scales 

(e.g. through wavelets transform), or by de-correlating the dataset through auto-regressive 

moving average (ARMA) models or state space modelling. 

In the following sub-sections, the main characteristics and the limits of the abovementioned 

four classes of multivariate statistical methodologies are overviewed.  

1.3.1.1 Nonlinear multivariate models 

Nonlinear multivariate statistical techniques were developed to overcome the problem of 

nonlinearity of the input data and of the nonlinear correlation structure of the data. The key 

strategy is to alter the algorithm of the PCA and the PLS to include the nonlinearity in the 

model, either through imposing nonlinear relation between variables (Wold et al., 1989; Baffi 

et al., 1999a), or through a neural network framework (Baffi et al., 1999b; Doymaz et al., 

2003; Zhao et al., 2006b). The search for the right nonlinear structure of the model can be 

very demanding.  

1.3.1.2 Multiway multivariate models 

When batch processes have to be examined and the third dimension (i.e.: time) is present in 

the data, the most popular multivariate statistical strategy is multiway SPC (Nomikos and 

MacGregor, 1994). Multiway PCA (MPCA) and multiway PLS (MPLS) are statistically and 

algorithmically consistent with PCA and PLS, respectively. In fact, MPCA and MPLS are 

equivalent to perform respectively PCA and PLS on an augmented 2D matrix derived by 

unfolding the 3D matrix.  
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In the so-called batch-wise unfolding (BWU) method, the data are spread out in a 2D matrix 

that considers the data time order (Wise and Gallagher, 1996), putting side-by-side the time 

slices of the original 3D matrix. Simple pre-treatment of the input data (i.e., mean-centring7) 

can remove the major nonlinearity of the variables (Nomikos and MacGregor, 1995b). The 

result is that BWU-MPCA and BWU-PLS summarize the variability of the data with respect 

to both the variables and their time evolution (Kourti and MacGregor, 1995). Accordingly, the 

cross-correlation between variables is explained together with the auto-correlation within each 

variable. Namely, the entire history of the batch is taken into account and the batch dynamics 

is properly represented into the model. This is an effective approach for a batch-to-batch 

monitoring strategy, but some problems arise in the realtime monitoring during a batch run. In 

fact, not only the BWU approach starts to work well only by the time that at least the 10% of 

the batch history is already available (Nomikos and MacGregor, 1995b), but also it has two 

main drawbacks: i) the batch processes to be monitored must all have the same length, and ii) 

the entire history of a batch should be available during the batch evolution in order to be able 

to complete the 2D process data matrix.  

To solve the latter problem, Nomikos and MacGregor (1995a) suggested to fill the incomplete 

matrix under the hypothesis that either the future unknown observations conform to the mean 

reference conditions, or the current deviation from the mean variables’ trajectory remain 

unchanged for the rest of the batch duration.  

The problem of uneven batch duration is very demanding. Using the BWU-MPCA or BWU-

MPLS requires effective methods for the alignment and synchronization of the variables time 

trajectories, by stretching or shrinking the batch run to the length of a reference one. The most 

popular methods for the synchronization of the variables profiles are dynamic time warping 

(Kassidas et al., 1999) and indicator variable (Westerhuis et al., 1999). The latter method uses 

a monotonic variable as a batch maturity index, so that it is possible to align the batches, 

being the indicator variable an index of the percentage of batch completion. Otherwise, an 

indicator variable is not always available among the data. On the other hand, the dynamic 

time warping is a signal synchronization technique based on a pattern matching scheme of 

couples of trajectories, expanding or compressing a variable profile to match a reference one. 

Despite some attempts to streamline the computational burden (Kaistha and Moore, 2001; 

Ündey et al., 2002), the warping requires a very expensive algorithm structure and only few 

online applications of synchronizing strategies have been reported (Fransson and Folestad, 

2006; Srinivasan and Qian, 2005 and 2007). Additionally, the synchronization is not always 

practicable, because it often entails the interpolation of the existing data in fictitious time 

points that can alter the auto- and cross-correlation structure of the data (Kourti, 2003).  

                                                 
7 Mean-centring is a pre-treating procedure operated subtract the mean of each variable to the actual value.   
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Alternative MPCA or MPLS strategies were developed. One such approach refers to a 

different unfolding methodology of the 3D data structure, i.e. the so-called variable-wise 

unfolding (VWU). VWU (Wold et al., 1987) spreads out the batch data in 2D matrices that 

preserve the direction of the variables, but do not consider the data time order. Variable-wise 

unfolded matrices are constituted by putting the horizontal slices of the original 3D matrix 

(i.e. observations) in vertical position one underneath the other. Using this procedure, neither 

estimating the future unknown part of the batch, nor synchronizing the batches are necessary. 

This results in easier online application than BWU approach, because filling the incomplete 

matrix with fictitious observations and aligning variables profiles of uneven length would 

introduce a certain degree of arbitrariness. On the contrary, VWU has the disadvantages that: 

i) it does not consider the time order, so the dynamics of the batch is lost, and the auto-

correlation of the variables’ signals is not considered, and ii) the correlation structure is forced 

to be constant during the entire batch (Kourti, 2003). Accordingly, the issue in the VWU 

scheme is to take into account the dynamics of the process, the data auto-correlation, and the 

change of cross-correlation during time.  

The dynamics of a process can be included into a VWU framework assuming an 

autoregressive (AR) structure. An AR model regresses the present (or future) values of a 

variable through a linear combination of the values of the same variable at the previous time 

instants. This is completely consistent with the fact that in dynamic processes the current state 

depends on the past time points (Ku et al., 1995). This idea can be easily integrated into the 

VWU scheme by putting side-by-side the VWU data with the lagged version of the variables’ 

time signals in the so-called dynamic PCA (DPCA) and dynamic PLS (DPLS) procedures. Lu 

et al. (2005b) introduced a dynamic structure to compute the dynamic effect both within a 

batch and between consecutive batches. In general, DPCA and DPLS are straightforward 

methods to take into account the process dynamics, and the result is a much more limited 

correlation of the system (Chen and Liu, 2002). However, the issue of the data nonlinearity 

and the change in the correlation structure for the VWU approach are still present.  

1.3.1.3 Multiple multivariate models

Multiple model approaches based on a BWU strategy are: i) the local models (one model per 

sampling instant; Rännar et al., 1998); ii) the evolving models (one model for every sampling 

instants and all the past sampling instants; Louwerse et al., 2000; Ramaker et al., 2005); and 

iii) the moving window models (models for a limited part of the batch, the current sampling 

instant and few past observations; Lennox et al., 2001; Lee et al., 2004). The abovementioned 

multiple model approaches do not necessitate the filling of the incomplete data matrix with 

future observations. However, they require the synchronization of the batches, and involve a 

very large number of models, that is not always feasible.  
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The alternative is splitting the process into a sequence of approximately linear segments 

(Kourti, 2003), following a multi-model structure based on the VWU-MPCA (or MPLS) 

analysis. At first, the need for phase division was introduced for the monitoring of multiple 

operating modes in continuous processes (Hwang and Han, 1999), but it revealed to be a 

viable and efficient solution for batch processes, too (Ündey and Çinar, 2002;  Ündey et al., 

2003a; Camacho and Picò, 2008a and 2008b). Therefore, more than one model is derived for 

a batch, each one for a different phase within the batch (Zhao et al., 2006a). The multiple 

phase modeling attenuates the problems related to the nonlinearity, and tracks the changes of 

correlation between variables during the batch. Camacho and Picò (2006a and 2006b), Lu et 

al. (2004a, 2004b and 2004c), Lu and Gao (2005a and 2006), Zhao et al. (2007a; 2007b) and 

Yao and Gao (2009) have designed different strategies for the automatic phase detection and 

switching.  

1.3.1.4 Preliminary data treatment for multivariate statistical methods

The preliminary treatment of the multivariate input data can be performed through: i) multi-

resolution methodologies of decomposition of the input signals on different frequency scales, 

or through ii) ARMA models and state space modelling to remove the correlation between 

data.  

The latter methods intend to erase any correlation on the latent space of the PCs (or LVs). 

Indeed, the multivariate statistical representations usually show high degree of auto-

correlation of the PCs and the LVs. This determines high rate of false alarms in SPC systems. 

Furthermore, the filtering of the PCs (or LVs) with ARMA models can remove the auto-

correlation. However, the univariate ARMA approach may not be sufficient for clearing the 

correlation, as demonstrated by Xie et al. (2006). Furthermore, the faults magnitude and time 

signatures of a process may be distorted by the ARMA filtering action (Lieftucht et al., 2006), 

so a Kalman innovation or state space models result to be preferable (Table 1.2) to better 

represent the multivariate case (Ljung, 1999).  

Table 1.2 Some papers on the methods for the data linearization based on 

Kalman innovations and state space models.  

Paper Topic 

Xie et al. (2006) Kalman innovation 
Lieftucht et al. (2006) Kalman innovation 
Shi and MacGregor (2000) state space models 
Li and Qin (2001) state space models 
Treasure et al. (2004) state space models 
Lee and Dorsey (2004) state space models 

 

In order to de-correlate the variables and to extract the deterministic features of a signal the 

wavelet transform can be used. The wavelet transformation produces a rectification of a signal 
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for any aperiodic, noisy, intermittent and transient signal, examining it in both the time and 

frequency domain (Addison, 2002). Mathematically speaking, the wavelet transform is a 

convolution of a wavelet function with a signal, which converts the signal in a more amenable 

way (Addison, 2002). In fact, the transformed version of the signal is filtered in such a way as 

to result more easily manageable (linear and stable white noise) by multivariate statistical 

techniques, making it suitable to work with data that are typically non-stationary and 

represent the cumulative effect of many underlying phenomena, each operating at a different 

scale, such as in batch processes (Kosanovich and Piovoso, 1997). In this way, the 

contributions of different scales of resolution are detected for all the events whose behaviour 

change over time and frequency. Once the signal is decomposed in different scales of 

resolution, the multivariate statistical model can be built both in the domain of the frequency 

(through the approximations and the details of the signal) and in the time domain 

(reconstructing the filtered version of the signal). Usually, one model is built for each 

decomposition scale (Bakshi, 1998; Bakshi et al., 2001; Yoon and MacGregor, 2004; Lee et

al., 2005b; Maulud et al., 2006; Chang et al., 2006), and considers only the most interesting 

scales to the purpose of the monitoring, either by denoising the signal (Shao et al., 1999) or 

by removing the higher frequencies to avoid the effects of the process drifts or the seasonal 

fluctuations (Teppola and Minkkinen, 2000). Moreover, these techniques are very useful for 

an unambiguous fault detection (Misra et al., 2002) and isolation (Reis et al., 2008).  

1.3.2 Multivariate image analysis 

In recent years, some attractive industrial applications involve the use of non-conventional 

and non-invasive sensors, such as cameras, for product quality characterization. Images are 

2D light intensity mapping of a 3D scene, and are characterized by several challenging issues:  

high dimensionality of the space, because images are may not only be monochromatic 

representations on gray levels, but may also have several channels of transmission (e.g.: 

RGB8 images, hyperspectyral images, etc…);  

multivariate nature, because an image is an aggregation of a wide plurality of pixels9;  

different characteristics in different scales of resolution;  

high spatial correlation, because of the effect of neighbourhood of the pixels;  

non-linearity, because of the physical structure of the object that is represented in the 

image;  

combination of spatial and spectral information;  

presence of noise, a random fluctuation of the light intensity that is an artefact of the 

signal.  

                                                 
8 RGB is a representation of the colours from an additive model derived by the primary colours red, blue and green.  
9 In digital imaging, the pixel is the smallest piece of information of an image arranged in a 2D grid.  
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Multivariate statistical methods are ideal techniques to deal with the high dimensionality of 

the images and their inherent multivariate nature. Accordingly, multivariate image analysis 

(MIA) gained increasing interest (Geladi and Grahn, 1996) for both inferential modeling and 

statistical process control. MIA is a set of multivariate statistical techniques that allow to 

analyze images in a reduced dimension space rather than in the image space (Kourti, 2005). 

The aim of this approach is to extract subtle multivariate information from the image, in a 

different way from the usual digital image processing where the image is enhanced in such a 

way that its features become visible. Note that the problems of spatial correlation (correlation 

between pixel), neighbourhood, nonlinearity and noise can be faced analogously to what was 

suggested in the Section 1.3.1. Indeed, nonlinear models, as well as multiway, multi-model 

and multiresolution approaches, can be extremely useful and well tailored to the purpose of 

the image inspection. In fact, to a certain extent, it is possible to associate the concepts of 

neighbourhood and spatial correlation with the ones of process dynamics, auto- and cross-

correlation, and the concept of spatial nonlinearity to the one of temporal nonlinearity. 

Moreover, images combine spectral (in terms of both light intensity and colour) and spatial 

information. In the literature, the use of  multi-resolution MIA is often suggested (Liu and 

MacGregor, 2007; Bortolacci et al., 2006), where the spectral information are properly 

studied by MIA classical approach, while the wavelet transform (Mallat, 1989; Ruttimann et 

al., 1998) is adopted to grasp the spatial information. Furthermore, the spatial information can 

be assessed including the study of the textural features of the inspected image (Salari and 

Ling, 1995; Tessier et al., 2007). In this way, effective frameworks are developed through 

image analysis for the task of either quality monitoring and control (Yu and MacGregor, 

2003; Yu et al., 2003;  Borah et al., 2007), or quality classification (Bharati et al., 2004), or 

quality prediction (Tessier et al., 2006).  

1.4 Thesis overview 

As was mentioned earlier, the two main topics of this Thesis are the design for multivariate 

statistical techniques for: i) the realtime product quality estimation and length prediction in 

batch chemical processes, and ii) product quality monitoring through image analysis in batch 

manufacturing. The challenges of both topics are presented and discussed in the following.  

1.4.1 Realtime quality estimation and length prediction in batch 

processes

In principle, the operation of a batch process is easy, because the processing usually evolves 

through a “recipe”, i.e. a series of elementary steps (e.g.: charge; mix; heat-up/cool; react; 

discharge) that can be easily carried out even without supervision if the production facility is 

outfitted with a fairly large degree of automation. However, it is often the case that batch 
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plants are poorly instrumented and automated, and may require intervention by the operating 

personnel to provide online adjustments of the operating recipe with midcourse corrections to 

avoid the production of off-specification products. In fact, if the instantaneous product quality 

is not found to track a specified trajectory, the processing recipe must be adjusted in real time 

(possibly several times during a batch), and the batch is kept running until the end-point 

quality meets the specification. Unfortunately, most of the batch processes are run in an open-

loop fashion with respect to product quality control, because information about product 

quality is not available online, but is obtained offline from laboratory assays of few product 

samples. To contain the laboratory-related expenses (in terms of: need of dedicated personnel, 

consumption of chemicals, use of analysis equipment, etc…) only few product samples are 

taken during the course of a batch and sent to the lab for analysis. Even so, in a typical 

industrial scenario where several productions are run in parallel, 15,000-20,000 samples may 

need to be taken and analyzed each year, which add up to an important fraction of the total 

product cost. Because of the lack of real time information on the product quality, it may be 

difficult to promptly detect quality shifts and to counteract them by adjusting the operating 

recipe accordingly. Therefore, significant drifts on the quality profiles may be experienced 

before any intervention can be done on the batch. The net result is that the recipe adjustments 

are delayed, the total length of the batch is increased, and the economic performance of the 

process is further penalized.  

In this context, two typical challenges need to be addressed by a monitoring system in the 

production of specialty chemicals: the real time estimation of the instantaneous quality of the 

product, and the real time estimation of the length of the batch (or the length of any 

production stage within the batch). In fact, the performance of a batch process could be highly 

improved if accurate and frequent information on the product quality were available. Software 

sensors (also called virtual sensors or inferential estimators) are powerful tools for this task. 

They are able to reconstruct online the estimate of “primary” quality variables from the 

measurements of some “secondary” process variables (typically, temperatures, flow rates, 

pressures, valve openings), by using a model to relate the secondary variables to the primary 

ones. These issues are faced in this Thesis with reference to a real-world industrial case study, 

i.e. a batch process for the production of resins by polymerization.  

It is well known that developing a first-principles model to accurately describe the chemistry, 

mixing and heat, mass and energy transfer phenomena occurring in a batch process (e.g.: 

polymerization; crystallization; etc…) requires a very significant effort. Several designed 

experiments may be needed to identify the most representative set of equations and all the 

related parameters. Furthermore, if the plant is a multi-purpose one, this effort must be 

replicated for all the products obtained in the same facility. Finally, the resulting first-

principles soft sensor may be computationally very demanding for online use.  
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Multivariate statistical soft sensors may overcome these difficulties (Kresta et al., 1994; Chen 

et al., 1998; Neogi and Schlags, 1998; Chen and Wang, 2000; Kano et al., 2003; Kamohara et

al., 2004; Zamprogna et al., 2004; Lin et al., 2007; Kano and Nakakagawa, 2008; Gunther et

al., 2009). This class of inferential estimators does not require to develop extra information on 

the process in terms of mechanistic equations or values assigned to physical parameters. 

Rather, they extract and exploit the information already embedded in the data as these data 

become available in real time from the measurement sensors. Very often, a multivariate 

statistical method, i.e. PLS, can be exploited to design a soft sensor for the online estimation 

of quality properties. Several studies about the online estimation of product quality through 

multivariate statistical techniques are available for continuous polymerization processes. Most 

of the literature on the application of multivariate statistical methods to batch polymerization 

processes is related to the prediction of the end-point product quality only, or to batch 

classification, or is limited to simulation studies, as can be seen in Table 1.3.  

Table 1.3 Literature review on the estimation of the product quality in 

polymerization processes: papers and topics. 

Reference Processing Problem Data 

Russel et al. (1998) continuous realtime estimation industrial 
Komulainen et al. (2004) continuous realtime estimation industrial 
Lee et al. (2004) continuous realtime estimation industrial 
Lu et al. (2004b) continuous realtime estimation industrial 
Warne et al. (2004) continuous realtime estimation industrial 
Kim et al. (2005) continuous realtime estimation industrial 
Aguado et al. (2006) continuous realtime estimation industrial 
Sharmin et al. (2006) continuous realtime estimation industrial 
Zhang and Dudzic (2006) continuous realtime estimation industrial 
Zhao et al. (2006a) continuous realtime estimation industrial 
Yabuki and MacGregor (1997) batch end-point estimation industrial 
Kaitsha and Moore (2001)  batch end-point estimation industrial 
Flores-Cerrillo and MacGregor (2004) batch end-point estimation industrial 
Ündey et al. (2004) batch end-point estimation industrial 
Zhao et al. (2008b) batch end-point estimation industrial 
Nomikos and MacGregor (1995) batch realtime estimation simulation 
Rännar et al. (1998) batch realtime estimation simulation 
Chen and Liu (2002) batch realtime estimation simulation 
Ündey et al.  (2003a) batch realtime estimation simulation 
Ündey et al.  (2003b) batch realtime estimation simulation 
Zhang and Lennox (2004) batch realtime estimation simulation 
Lu and Gao (2005) batch realtime estimation simulation 
Camacho and Picò (2006) batch realtime estimation simulation 
Doan and Scrinivasan (2008) batch realtime estimation simulation 
Zhao et al. (2008a) batch realtime estimation simulation 

 

Very few papers present industrial applications of multivariate statistical software sensors for 

the realtime estimation of the product quality for industrial batch processes (Marjanovic et al., 

2006; Chiang and Colegrove, 2007). In this PhD Thesis, multivariate statistical techniques are 
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proposed to provide the online estimation of product quality in batch industrial 

polymerization processes.  

There are several specialty productions for which the total batch length is not known a priori, 

nor is it the length and the number of the processing stages within the batch. Knowing in 

advance the processing time is useful for several reasons. In fed-batch processes, for example, 

fresh raw material and catalysts should be loaded into the process vessels at a convenient time 

instant to adjust the batch run in real time. The ability to estimate in real time this instant 

(which may change from batch to batch) can result in savings both in the number of quality 

measurements to be processed by the laboratory and in the required total processing time 

(Marjanovic et al., 2006). On a different perspective, realtime estimation of the total length of 

the batch can be very useful for production planning, scheduling of equipment use, as well as 

to coordinate the operating labor resources. For these reasons, the non-conventional use of 

multivariate statistical techniques for the realtime prediction of the batch length is suggested 

and discussed in the Thesis.  

The abovementioned multivariate statistical techniques are applied and implemented to an 

industrial case study of batch polymerization for the production of resins. This process is 

monitored online through a fairly large number of process measurements. Several challenging 

features are present in this case study:  

process measurements are noisy, auto-correlated and cross-correlated;  

quality measurements are available offline from lab assays, but are scarce, delayed with 

respect to the sampling instant and unevenly spaced in time (a case which is rarely 

considered in literature);  

the batches evolve through a nominal recipe, which is subject to several online adjustments 

made by the plant personnel depending on the actual evolution of the batch, as it is 

monitored by the offline quality measurements, and their personal judgment;  

the process is poorly automated;  

the batch length exhibits a large variability.  

All of these features make each batch hardly reproducible, and the online quality estimation a 

challenge.  

1.4.2 Multivariate statistical quality monitoring through image analysis 

There is a class of products whose quality is not related to chemical or physical properties, but 

to surface properties (like roughness, pattern, colour, texture, and the like). For these 

products, quality is assessed by the analysis of an image of the manufactured device. For 

example in semiconductor manufacturing image analysis is used for quality monitoring, but 

only for the task of measuring the most important physical parameters of the manufactured 

device, despite several other key features of the semiconductor which determine the device 

quality are hidden and remain unmeasured. In particular, image inspections are used in 
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photolithography. Photolithography is a process that selectively removes parts from a thin 

film using light, so that a geometric pattern can be transferred (often from a mask) to a light 

sensitive chemical (the resist) deposited on a substrate. This process is used during the 

fabrication of integrated circuits (IC) as well as in many other micro-fabrication processes 

(e.g., micro-compressors in mechanics: Waits et al., 2005; in biotechnology applications: Lee 

et al., 2008a). In particular, a microelectronics manufacturing process comprises an extensive 

sequence of complex semi-batch processes (Helbert and Daou, 2001), among which 

photolithography is referred to as one of the most important (Blais et al., 2001). In fact, 

photolithography: i) recurs up to 35 times for a given device; ii) defines the wafer critical 

dimension (CD) and the other most influencing parameters; and iii) affects all the successive 

processing phases (e.g., the doping) and the interconnection between different segments of the 

device. From an economical point of view, the lithography is responsible for about 60% of the 

processing time and 35-40% of the total cost of the IC fabrication (Blais et al., 2001). As a 

consequence, it is quite clear that monitoring the product quality during photolithography 

through a fast, sensitive, and reliable system is highly advocated.  

Although considerable effort has been dedicated to define technologies and procedures to 

meet the requirements on the product quality (Guldi, 2004; Yaakobovitz et al., 2007), 

automatic process control has not yet been implemented on a large scale in semiconductor 

manufacturing, and the industrial practice is often carried out empirically with relatively little 

understanding of the underlying physics and chemistry (Edgar et al., 2000), or through run-to-

run control strategies (Zhang et al., 2007 and 2008). Statistical process control techniques, 

too, are sometimes adopted (Edgar et al., 2000; Yue et al., 2000; Waldo, 2001) in order to 

monitor the variability of the process, to detect the abnormal conditions, and to identify the 

cause for a perceived anomaly.  

Currently, the most advanced monitoring strategies exploit hardware and software devices for 

both signal filtering and image processing (Rao, 1996; Lee, 2001). For instance, the use of 

scanning electron microscopy (SEM) images is common for the measurement of the physical 

parameters of a device (Knight et al., 2006) such as the CD (Constantoudis et al., 2003; Patsis 

et al., 2003). However, the typical inspecting tools focus on inline optical metrology systems 

measuring the CD of the pattern and its variability; only the most sophisticated instruments 

also determine the edge height and the side-wall angle (SWA; El Chemali et al., 2004). 

Several important quality features like the line edge roughness (LER), the edge surface 

smoothness, the actual shape of an edge (and its variability) are still rather resilient to 

effective, fast and low-cost monitoring technologies. Only recently some researchers (e.g., 

Zhang et al., 2007; Yaakobovitz et al., 2007; Khan et al., 2008) have suggested procedures to 

start tackling some of the above issues. 

Thus, the demand of satisfying the multiple requirements of wafer fabrication and the 

dynamics of a quickly changeable microelectronics market call for new and more powerful 
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monitoring tools. The quality of the manufacturing could be greatly improved if fast and more 

meaningful information were retrieved in a reliable fashion. For this reason, an innovative 

methodology is presented to inspect the surface of a product. In particular, the main 

components of the proposed quality monitoring strategy are: 

sensitive filtering pre-treatment, to denoise the image signal removing the artifacts (i.e., 

the non-systematic fluctuations of the image light intensity) without affecting the featured 

parts and their peculiar characteristics (i.e., the real surface roughness);  

tailored multivariate statistical monitoring models, based on a principal component 

analysis approach, which extract the information content on surface roughness and 

patterned shape.  

In particular, the analysis is performed by PCA on different scales of resolutions. Innovative 

modifications of the PCA model are proposed to analyze both the surface roughness and the 

shape of the patterned surface. The effectiveness of the proposed approach is tested in the 

case of semiconductor surface SEM images after the photolithography process, but the 

approaches are general and can be applied also to inspect a product through different types of 

images or different phases of the same production systems, or through different types of 

processes.  

1.4.3 Thesis roadmap 

Chapter 2 overviews the mathematical and statistical background of the methods adopted in 

this Thesis, i.e. multivariate statistical models and multiresolution techniques. In particular, 

PCA and PLS are presented, and the issue of both data pre-treatment and model enhancement 

are discussed. Finally, multiresolution methodologies are recalled.  

Chapter 3 describes the industrial process under study (i.e. production of resins by batch 

polymerization). Details on the plant and on the production recipe are provided. The industrial 

system of supervision is briefly presented.  

Chapter 4 show how to design a multivariate statistical estimators of the product quality for 

the processes under study. Different architectures of the soft sensor are presented, and 

improvements of the estimation performance are proposed by including a multiphase structure 

and dynamic information on the process.   

The problem of the prediction of the batch length is the topic of Chapter 5, in which the 

effectiveness of time-evolving methods is demonstrated.  

In Chapter 6, the industrial implementation of prototypes of the abovementioned soft sensors 

is briefly described.  

Chapter 7 deals with the development of a fully automatic monitoring systems for the 

characterization of the surface of high value added products by means of multiresolution and 

multivariate image analysis. Reference is made to the manufacturing of integrated circuits. A 

prototype interface for photolithography monitoring is also presented. 
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Final remarks conclude the Thesis.  


