
Chapter 2 

Mathematical and statistical background 

This Chapter overviews the mathematical and statistical techniques that are adopted in the 

development of  the multivariate and multiresolution quality monitoring strategies.  

Details about the multivariate statistical techniques and the multiresolution wavelet 

transformation are presented and discussed. In particular, the theoretical formulation of PCA 

and PLS is recalled. After that, it is shown how these techniques can be integrated in 

monitoring frameworks of batch processes. Finally, the wavelet transform techniques are 

reviewed, describing their ability to extract the properties of a signal through a multiscale 

decomposition.  

2.1 Multivariate statistical techniques  

In the following sections, the mathematical and statistical background of the multivariate 

statistical techniques used in this Thesis is overviewed. In particular, details are given on both 

the principal component analysis and the projection on latent structures, from both the 

theoretical and the algorithmic points of view.  

2.1.1 Principal component analysis (PCA) 

PCA is a multivariate statistical method that allows to summarize the information of a wide 

set of correlated data projecting them onto few fictitious orthogonal variables which capture 

the variability of and the correlation between the original data.  

Let suppose that a set of data (i.e.: I observations of J variables) are collected in an (I×J) X 

matrix from an in-control reference, after being conveniently pre-treated (see §2.1.1.2). PCA 

performs a decomposition of the original variables to a system of eigenvalues of the 

covariance matrix of X through a principal axis transformation (Jackson, 1991). In this way, 

PCA can find the combination of the J original variables that describe the most meaningful 

trend of the dataset. From a mathematical point of view, PCA relies on an eigenvector 

decomposition of the covariance matrix of  X:  

Xcov    .                                                                                                               (2.1)  

This method splits the X matrix of rank R in a sum of R matrices Mr of rank 1:  
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Rr MMMMX 21    ,                                                                          (2.2) 

in which every Mr matrix can be represented by the outer product of two vectors: the scores  

tr and the loadings pr:  

TTT

22

T

11 Rrrr ptptptptX    ,                                                                  (2.3) 

where T

rp  is the transpose of pr. This operation is a principal axis transformation that shifts 

the data in a set of uncorrelated data tr described by orthogonal loading vectors pr.  

In fact, the simplest way to reduce the dimensionality of the original dataset is to find a 

standardized linear combination Xp
T

r  of the original variables (Härdle and Simar, 2007), 

which maximizes the covariance of the system to deal with the correlation between the 

original J variables: 
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The solution of the optimization problem corresponds to the maximization of a quadratic form 

for points on a unit sphere, which is the following eigenvector problem (Johnson and 

Wichern, 2007):  
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   ,                                                                    (2.5) 

where the loadings pr are eigenvectors of , and r are the eigenvalues associated to pr:  

0rrr Ipp    ,                                                                                                      (2.6) 

being I the identity matrix, and pr the director cosines of the new coordination system on 

which the original data are projected. As a result, r is a measure of the variance explained by 

the product T

rrpt , where variance assume the meaning of quantity of information embedded 

into the model. Geometrically, the scores are orthogonal:  
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   ,                                                                          (2.7) 

while the loadings are orthonormal:  
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   .                                                                                                 (2.8) 

Furthermore, if the PCs are zero mean and zero covariance, it follows that:  
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   .                                                                                                   (2.9) 

where tr( ) is the trace of the covariance matrix and  is the determinant of .  

As underlined by Jackson (1991), the new variables tr are principal components of X and the 

terms of equation (2.3) are usually presented in descending order of the eigenvalues 

(explained variance).  

When data have a large number of highly correlated variables, X is not a full rank matrix and 

it is possible to represent it through a small number of PCs, in such a way that the greatest 

part of the variance can be captured by a limited number of latent variables, defining A PCs 

with A<<J. In this sense, PCA summarizes the valuable information of the original J-

dimensional hyperspace of the process variables by projecting the original observations onto 

an A-dimensional latent subspace of PCs. From an algebraic point of view, X can be 

described by two terms: i) the sum of outer products of the first A pairs scores-loadings, and 

ii) the sum of the last (R-A-1) pairs of scores and loadings:  

ETPptptX
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r

rr    .                                                                         (2.10) 

This means that X can be approximated by X̂ :  

Tˆ TPX    ,                                                                                                                (2.11) 

and:  

XXE ˆ                                                                                                                   (2.12)  

is called residual and corresponds to the last (R-A-1) terms of the equation (2.3): 

R

Ar

rrRRAA

1

TTT

11 ptptptE    .                                                                        (2.13) 

The residuals are related to the non-systematic part of the signal (i.e. noise), that is negligible 

if the number of the A retained PCs is conveniently chosen.  
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Figure 2.1 Geometrical interpretation of the scores and the loadings of the PCA method 

for a dataset with I=8 observations of J=2 variables (x1 and x2).  

The geometrical interpretation of scores, loadings and residuals is shown in the simplified 

case of Figure 2.1. The first principal component (PC1) identifies the direction of maximum 

variability of the observation in the original space of process variables (x1, x2). PC1 is the best 

fitting of the data, in the sense of a least squares minimization of the residuals.  

The loadings, which are collected into matrix P of dimension (J×A), are the director cosines 

of the PCs, i.e. the direction of maximum variance of the data. The scores are collected into T, 

a (I×A) matrix, and are the coordinates of the data into the new system of PCs. In this way it 

is possible to markedly reduce the number of variables, projecting the data from the high 

dimensional space of the original variables to a subspace of a reduced number of latent 

variables. The lack of accuracy of this representation is highlighted by the residual, the 

perpendicular distance of the data form the hyper-plane of the PCs.  

2.1.1.1 PCA algorithm

The most frequently used algorithm for the PCA modelling is the NIPALS (non-iterative 

partial least squares) algorithm, a computing procedure developed by Wold, as referred by 
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Eriksson et al. (2001). This procedure computes the scores and loadings, beginning form the 

identification of PC1 through t1 and p1 for the matrix X. Then, the first residual E1 is 

calculated as the difference between T

11pt  and X. In turn, the scores and loadings of E1 are 

calculated, identifying the second principal component (PC2). The algorithm is then 

recursively repeated as much times as the desired number of PCs to be considered.  

For an iteration r, the algorithm goes through the following steps:  

1. let xi be a row vector (observation) of Xr. Set:  

ir xt    ;                                                                                                                   (2.14) 

2. calculate T

hp : 
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T    ;                                                                                                              (2.15) 

3. normalize T

hp  to unit length: 
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p    ;                                                                                                       (2.16) 

4. calculate tr: 

rr

r
r

pp

Xp
t

T
   ;                                                                                                              (2.17) 

5. compare tr calculated in 2 to the one calculated in 4. If they are equal for less then an 

assigned tolerance then the method is converged, else restart from 2 with the last 

calculated value of tr;  

6. calculate: 

T

1 rrrr ptEE                                                                                                          (2.18) 

7. the residual at iteration r is the matrix to begin the iteration (r+1), setting rr EX 1 .  

Geladi and Kowalski (1986) demonstrated that the solution of the algorithm is the same as the 

rigorous procedure, which solves the eigenvalue-eigenvector problem.  

Modified versions, such as the straightforward implementation of modified PLS (SIMPLS, 

due to de Jong, 1993), and improvements of the algorithms (Yabuki and MacGregor, 1997; 

Lindgren and Rännar, 1998) are available in literature.  
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To build a data-driven model, databases of historical records have to be consulted. However, 

the calibration of the model presents some issues that exceeds the mere collection of the data, 

for example: 

pretreatment of the dataset and selection of the variables to include into the model;  

choice of the dimensionality of the subspace of PCs;  

management of the missing data in the original dataset and during the online 

implementations;  

treatment of the data non-linearity;  

treatment of the time-varying nature of the data in batch processes.  

These issues are discussed in the following sections.  

2.1.1.2 Data collection, variable selection and data pre-treatment

The most representative samples of in-spec products or of in-control processes have to be 

chosen to calibrate the model (Eriksson et al., 2001; Capron et al., 2005). The reference 

dataset should characterize the process of interest for both the target value and the admissible 

variability, collecting a series of historical information which form the NOC.  

After properly selecting the optimal reference, the input data have to be properly pre-treated. 

Accordingly, some considerations should be done about: i) the pre-treatment of the input data, 

and ii) the importance of the variables included into the models. Researchers agree when 

stating that the performances of a data-driven model improves if the variables included in the 

model are suitably selected and conveniently pre-treated (Höskuldsson, 2001; Chu et al., 

2004).  

Depending on the requirements, variables can be included or discarded following a criterion 

of engineering judgment. From the statistical point of view, the most noteworthy variables 

can be identified by the loadings, which express the relation between variables and the 

importance of the variables in PCA models. Furthermore, the variables can be weighted all in 

the same way, by “auto-scaling” the input data (mean-centring and scaling to unit variance) to 

linearize the data and to handle the differences in scales (Geladi and Kowalski, 1986; Kourti, 

2003). As an alternative, different weights can be assigned to the variables to determine 

uneven influences of each variable on the model (Xu et al., 2006).  

In this Thesis, the auto-scaling is adopted. The auto-scaling mean-centres and scales to unit 

variance all the variables. The mean-centring is performed calculating the mean value jx  of 

every variable j=1,…, J of the X data:  

 ,,1   ,1

,
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i

ji

jx    ,                                                                                       (2.19)  
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where xi,j is the element of X in row i and column j. The next step is subtracting from every 

variable xj (the j
th

column vector of X) the respective mean jx .  

The scaling to unit variance is performed by dividing the values of all the variables xj in such 

a way that each variable gets unit variance:  
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x
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)var(

x

x    .                                                                                       (2.20) 

This procedure gives the same weight to all the variables and deals with the differences in the 

scales of the variables that have different measurement units. Furthermore, when the X matrix 

is auto-scaled, the covariance matrix becomes the correlation matrix. For this reason PCA on 

auto-scaled data is considered a correlative model which extracts the correlation between 

variables and the loadings are the director cosines of the new coordination system.   

2.1.1.3 Selection of the principal component subspace dimension

Once the most significant variables are incorporated into the model and the data are suitably 

pre-treated, the latent space dimensionality in which the data are projected have to be chosen. 

Suggestions about how to determine the ideal dimensionality of the reduced latent variable 

subspace can be found in Valle et al. (1999) and Li et al. (2002), where several methods are 

compared. However, the most effective methods for the choice of the latent space 

dimensionality are the SCREE test (Jackson, 1991) for its simplicity, the cross-validation 

(Wold, 1978; Eastment and Krzanowski, 1982) although it is computational demanding, and 

the variance reconstruction error (Qin and Dunia, 2000), which dispels some ambiguities of 

the previews ones. The first and the second methods are considered in this work for their 

simplicity.   

In particular, the basic idea of cross-validation (Mosteller and Wallace, 1963) is:  

randomly dividing the data in a series of subgroups of one or more observations, cutting 

the X matrix into a series of horizontal segments;  

building a reduced datasets deleting one of the subgroups, and calibrating the multivariate 

statistical model on the reduced dataset and to evaluate the goodness of fitting for the 

deleted subgroup through a proper criterion;  

iterating the procedure for all the subgroups;  

repeating all the previews points changing the number of retained PCs.  

The criterion to estimate the goodness of fitting is to observe the root-mean-square error of 

cross-validation (RMSECV), which depends on the prediction error sum of squares (PRESS):  

IJ

PRESS
RMSECV    ,                                                                                           (2.21) 
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with ei,j element of row i and column j of the residual matrix E. Adding relevant PCs should 

decrease the error, while adding PCs that explain only noise should increase the error. In 

correspondence to the minimum of RMSECV, the ideal number of PC is identified.  

In the industrial practice, it is often experienced that the function of the RMSECV is 

monotonically decreasing with the addition of PCs. In this situation, the SCREE test is 

suggested (Jackson, 1991; Ku et al., 1995). This is a simple, empirical, and graphical 

methodology that analyzes the function of the explained variance (i.e. the characteristic roots 

of the covariance matrix) of PCA models while changing the number of PCs. The method 

looks for a “knee” point in the plot of the residual percent variance against the number of PCs. 

The method is based on the idea that the residual variance should reach a steady state when 

the PCs begin to account for random errors. When a break point is found and the variance 

stabilizes, that point corresponds to the number of PCs which properly represent the original 

data. 

2.1.2 Projection on latent structures (PLS; partial least squares 

regression)

PLS is a multivariate statistical method to relate two sets of data by a multivariate linear 

model. It was developed as a regression tool to consider the correlation between the variables 

of two sets of data X and Y. PLS exploits the typical ability of the multivariate methods to 

analyze many noisy and collinear data, dealing with the ill-conditioned regression problems 

and performing a multivariate linear regression.  

Let us first consider the problem of multiple linear regression as a premise. To relate I

samples of J variables collected in a matrix (I×J) of primary variables X to a matrix (I×Q) of 

M secondary variable Y, a linear polynomial function may be assumed: 

EXBY    ,                                                                                                           (2.23) 

with E the residual vector and B the matrix of regression coefficients. Three different 

situations arise:  

if J > I (the number of variables is higher then the one of the samples), there is a finite 

number of solutions;  

if J = I (the number of variable is equal to the one of the samples), a single solution is 

present;  

if J < I (the number of samples is higher then the one of the variables), it is impossible to 

find an analytical solution, but the least squares method can be used instead:  
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YXXXB
T1T    .                                                                                                   (2.24) 

However, because of the collinearity of the data in X, the inversion of XX
T  is difficult, if 

not impossible.  

To overcome the problem of collinearity, to investigate the correlation between primary 

variables, and to find the correlation between primary and secondary variables, PLS is a 

valuable help (Geladi and Kowalski, 1986; Dayal and MacGregor, 1997a). In summary, it is a 

method which explains the directions of maximum variability of X that better predict Y. In 

fact, PLS reduces the dimension of the system, simultaneously finding the space of LVs that 

are more predictive for the secondary variables and are near to the direction of maximum 

variability of the primary variables.  

The method consists of two outer relations and one inner relation. The outer relations are:  
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   ,                                                                               (2.25) 

where tr and ur are score vectors (in T and U, score matrices), pr and qr are loading vectors 

(in P and Q loading matrices), and E and F are residual matrices whose norms E  e F  

should be minimized in the least squares sense. The inner relation is a linear relation between 

the scores of the two matrices: 

Rrb rrr ,,1for    tu    ,                                                                                        (2.26) 

where br are regression coefficients:  

rr

rr
rb

tt

tu
T

T

   .                                                                                                              (2.27) 

However, this is not the best algorithm from the computational point of view, because the 

principal components are calculated for the two blocks separately, and so exhibit a weak 

relation to each other. It would be preferable to give to the scores tr and ur information about 

each other, so that the LVs can be slightly rotated to lie closer to the secondary variables. A 

modified version of the NIPALS algorithm is adopted for the model building, and is described 

in the following subsection.  
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2.1.2.1 Non-iterative partial least squares algorithm

A modified version of the NIPALS algorithm is described here (Geladi and Kowalski, 1986), 

in which the scores of X and Y exchange information about each other, adopting some 

weights wr as a mathematical artifice to maintain orthogonal scores.  

The algorithm develops through the following stages:  

1. fix a column xj of X as initial value of the score t1 and fix as initial estimation of the score 

u1 a column yq of Y:  

q

j

yu

xt

1

1
   ;                                                                                                                (2.28) 

2. calculate at iteration r:  
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r
r
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w

T

T

   ;                                                                                                          (2.29) 

rr Xwt    ;                                                                                                                (2.30) 
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T

T
   ;                                                                                                            (2.31) 

rr Yqu    ;                                                                                                                (2.32) 

3. check the convergence of the values calculated through (2.30) and (2.32) to the ones of 

(2.28) for less then a predetermined tolerance;  

4. calculate the loadings;  
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r
r
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tX
p

T

T

   ;                                                                                                             (2.33) 

5. update the loadings, scores, and weights:  

T

old,

T

new,T

new,

r

r

r
p

p
p ;                                                                                                          (2.34) 

old,old,new, rrr ptt    ;                                                                                                 (2.35) 



Mathematical and statistical background 

 

 

41

old,old,new, rrr pww    ;                                                                                              (2.36) 

6. compute regression coefficients by (2.27);  

7. compute residuals:  

T

rrrr ptXE    ;                                                                                                       (2.37) 

T

rrrrr b quYF    ;                                                                                                    (2.38) 

8. repeat the procedure for every retained LV, returning to point 1 after replacing X and Y 

with Er and Fr, respectively.  

Scores and loadings maintain the abovementioned properties of orthogonality and 

orthonormality, respectively.  Besides, the weights are orthonormal:  

T

,

T

r rsrs www    ,                                                                                                    (2.39) 

where sr ,  is the Kronecker delta.  

2.1.2.2 Variable selection in PLS models

For a successful calibration of multivariate statistical models the variable selection is of 

decisive importance. The lack of an appropriate variable selection can spoil the PLS model 

building, as shown by Höskuldsson (2001).  

Some of the  methods  proposed for the variable selection are the stepwise collinearity 

diagnostic (Brauner and Shacham, 2000), the orthogonal scatter correction (Höskuldsson, 

2001), the projection pursuit based method (Zhai et al., 2006) or the bootstrapping-based 

variable selection (Chu et al., 2004). Chong and Jun (2005) compare some of the most 

important methodologies, among which the most interesting are the stepwise regression and 

the one based on the variable importance in the projection (i.e. VIP index). The stepwise 

regression is a standard procedure which evaluates the most important variables through the 

effect of the sequential insertion of variables on the model. The VIP method, suggested by 

Chong and Jun (2005), demonstrates to be the most effective. The VIP method selects the 

most important variables to the sake of the PLS regression through the so-called VIP index:  
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The VIP index gives a measure of the variable importance in a specific PLS model evaluating 

the effect of the weights normalized with respect to regression coefficients and scores. In 

particular, the variables are deemed to be important following a rule of thumb that fixes a cut-

off value at VIPj=1. It is to say that all the variables whose VIPj is greater than one are 

considered valuable predictors in the regression problem.   

2.1.3 Monitoring charts 

Once the model is calibrated, the overall conformance of a new individual observation xI+1 to 

the selected optimal reference can be checked through the investigation of two parameters:  

one parameter that assesses the deviation of the new observation from the average 

conditions of the reference;  

one parameter that evaluates the model representativeness, namely how well the model fits 

the actual conditions of the new incoming observation.  

These parameters are statistical indices, which are a synthetic response on the status of the 

new observation, and are used to build statistical monitoring charts.  

The first step to evaluate the new incoming observation is to project it in the reduced space of 

the PCs in the case of PCA:  

Pxt 11
ˆ

II     ,                                                                                                            (2.41) 

or in the reduced space of the LVs in the case of PLS:  

WP

Wx
t

T

1
1

ˆ I
I    ,                                                                                                          (2.42) 

where the predicted score can be used for the estimation of the secondary variable:  

T

11
ˆˆ Qty II     .                                                                                                         (2.43) 

The score 1
ˆ

It  is the projection of xI+1 into the coordinate space of the LVs.  

Furthermore, the values of all the scores 1
ˆ

It  can be cumulated in a single number, the 

Hotelling 2

1IT  statistics: 
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2

1
ˆˆ)(E)(E IIIIIIIT ttxxSxx    ,                                          (2.44) 

where  is the diagonal matrix of the eigenvalues of S, the estimation of the covariance 

matrix  from the available data, and )(E 1Ix  is the expected value of xI+1.  

In summary, the status of the new individual observation xI+1 with respect to the average 

conditions imposed by the reference dataset can be assessed through the scores or through the 

Hotelling statistics.  
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However, the individual observation vector is not completely characterized in the space of the 

latent variables. In fact, in the score space of PCA the new observation xI+1 is represented by:  

T

1T

T

1
1

ˆ
ˆ

ˆ Pt
PP

Pt
x I

I
I    ,                                                                                            (2.45) 

with an error eI+1 of reconstruction that is given by: 

111
ˆ

III xxe    .                                                                                                     (2.46) 

Consequently, to the purpose of a complete characterization of the new incoming sample, the 

non-systematic part of the data (i.e. noise) falling into the residuals should be monitored 

through the residuals sum of squares of the new observation: 

T

11

T

11111
ˆˆ

IIIIIIISPE eexxxx    ,                                                          (2.47) 

which indicates if the new observation xI+1 can be adequately represented by the original  

subset of latent variables.  

Since the attributes of a process must stay close to a predetermined target value without 

changing perceptibly, the multivariate SPC assumes that the process adheres to a state of 

statistical control (conformance) if it is within certain limits. Through PCA and PLS it is 

possible to find out statistical confidence limits that work as efficient detectors of in-control 

(in-spec) or out-of-control (out-of-spec) states. Confidence limits are interval estimators of 

population parameters, and describe the interval where it is likely to include the 

product/process parameters which can be considered acceptable. The confidence limits are 

constructed on the basis of a given dataset. If  is an unknown parameter from a population 

and  the set of all the possible , a confidence region R(X) of likely  values can be 

determined by a set of data measurements X. In particular, R(X) is said to be a 100(1- ) % 

confidence region when:  

1RP X    ,                                                                                 (2.48) 

namely the probability P that the parameter belongs to the population is (1- ) if it is found to 

belong to the confidence region.  

Monitoring the average value of a sample means determining whether a specific value of the 

average belongs plausibly to the population. In terms of hypothesis testing, monitoring the 

observation average is testing:  

01

00

:H

:H

X

X
                                                                                                              (2.49) 
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where H0 is the null hypothesis, H1 is the alternative hypothesis, 0 is the vector of the 

expected values of the J variables of the matrix X, and X  is the array of the mean values of 

the variables of X.  

To evaluate the confidence region for the average conditions of a J-dimensional population, 

the limits are calculated by:  

,,

T1 1
P JIJF

JI

JI
I XSX    ,                                                              (2.50) 

where S is the estimator of the covariance matrix, and the term 
T1

XSX  has a 2

,IJT  

distribution with I and J degrees of freedom, and is related to a Fisher’s F-distribution ,, JIJF  

that is the upper 100
th

 percentile of the F-distribution (Johnson and Wichern, 2007). Given 

this premise, the confidence limit of the Hotelling statistics at the 100(1- ) % level of 

confidence for a system of A latent variables and I samples is:  

,,

2

lim

1
,, JIJF

AI

AI
IAT    ,                                                                                 (2.51) 

which determines in the A-dimensional score space an ellipsoidal confidence region, whose 

semi-axis are:  

ArIATs rr ,,1   with ,,2

lim     .                                                                   (2.52) 

This is a generalization on a multivariate system of the Student’s t-distribution imposed to the 

single scores (Härdle and Simar, 2007). Indeed, for the r
th

 score, the univariate limit at 

%1100  confidence level is:  

Artrt r
I

,,1   with ,
2

,1
lim    .                                                                  (2.53) 

where /2,1It  is the Student’s t-distribution with 1I  and /2 degrees of freedom.  

The components which remain unexplained in the projection to the reduced space of LVs 

have to be monitored, as well. The sum of squares of the unexplained components is the SPEi, 

that derives from (2.47):  

J

j

jii IieSPE
1

2

, ,,1   with    .                                                                               (2.54) 

The distribution of the representation errors SPEi can be well approximated as the distribution 

of c times a 
2
-distribution (Box, 1954):  
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    ,                                             (2.55) 

so the upper limit at a confidence level 100(1- )% for the SPEi is:  

2

,lim vcSPE    ,                                                                                                    (2.56) 

and 2

,v  is the 
2
-distribution with v and  degrees of freedom. In this Thesis, limSPE  is 

calculated through the approximate distribution created by Jackson and Mudholkar (1979):  
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,                                                        (2.57) 

where: 
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jn    ,                                                                                        (2.58) 

and:  
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2

31
0

3

2
1h     ,                                                                                                        (2.59) 

where z  is the normal standard deviate corresponding to the upper (1- ) percentile. 

In summary, when a new observation xI+1 is available it can be judged by comparing it to the 

ones of the reference. To do this, the monitoring procedure goes through the following steps:  

projection of xI+1 onto the sub-space of PCs or LVs as 1
ˆ

It ;  

comparison between the A components of the 1
ˆ

It  and the respective confidence limits 

,lim at , or in a more effective fashion through multivariate indices 2

1IT  or 1ISPE  

observing the conditions:  

,,

lim1

2

lim

2

1

SPESPE

IATT

I

I    .                                                                                              (2.60)

if the conditions (2.61) are satisfied, this means that the new observation is in a state of 

statistical control (conformance to the reference), with a probability of %1100 , 

otherwise there is either a problem determined by the change in the mean conditions of the 
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product/process ,,2

lim

2

1 IATTI  or a problem in the representativeness of the statistical 

model lim1 SPESPEI .  

This monitoring procedure is equivalent to test the hypothesis of conformance of xI+1 to the 

reference set for both 2

1IT  and 1ISPE .  

However, a word of caution regarding the use of confidence limits on scores and Hotelling 

statistics is advised by Wise and Gallagher (1996). In fact, the confidence limits can be found 

only under specified conditions. Indeed, when the hypothesis of normal and uncorrelated 

input data (IID, independent and identically distributed variables) is assumed, the central limit 

theorem
1
 can be invoked. The assumption that a sample is drawn from a IID population is 

necessary to obtain the distribution of the test statistics, to build the confidence limits, and to 

estimate the proportion of a population that falls within certain limits (Jackson, 1991). 

Actually, it is possible to invoke the central limit theorem, which states that the scores, which 

are linear combinations of the original variables, derived from a sufficiently large X dataset 

are normally distributed, only if the J variables of X are IID random variables. On the 

contrary, if the original variables are not IID, the abovementioned fundamental assumption is 

violated, and the scores are not normally distributed. This determines that the confidence 

limits can not be valid in the aforesaid form.  

Therefore, PCA and PLS models can be adequate representation of a phenomenon only if 

there is no data autocorrelation, the cross-correlation among variables is constant through the 

available samples, and the original variables are normally distributed (Kourti, 2003). In other 

words, the multivariate statistical techniques are successful only when common cause 

variability affects a process and when the process variables are normally distributed and 

independent over time or space. These conditions are rarely satisfied, and the processes 

products often show clear non-linear behaviour and changes in the correlation structure 

between variables, and in space and time.  

Finally, a geometrical interpretation of PCA and PLS is shown in Figure 2.2. The samples of 

an optimal reference are projected form the original space onto a space of reduced dimensions 

made of latent variables, which are the directions of maximum variability of the data. Within 

this sub-space, the new observations can be analyzed through the T
2
 and SPE indices. In 

particular, the T
2
 index indicates the distance of the new observation from the average 

conditions of the reference, and the SPE indicates the distance of the new observation from 

the hyper-plane of latent variables. 

                                                 

 

 
1 The central limit theorem states that the sum of a sufficiently large number of IID random variables will tend to be normally 

distributed. 
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Figure 2.2 Geometrical interpretation of the confidence limits in multivariate SPC and 

SQM.  

A large value of the Hotelling statistics (i.e. the new observation is out of the elliptical limits) 

is an indicator of an unusual variation within the model, while a large SPE value (i.e. the new 

observation overcome the limit perpendicular distance from the hyper-plane of the latent 

variables) identifies anomalies outside the model.  

2.1.3.1 Contribution plots, limits on the contribution plots, and relative contributions

When a new observation xI+1 does not meet the NOC and an abnormal variation is detected by 

the monitoring charts, further analyses are needed to find which variable (or set of variables) 

causes the current state of the process (product) to be out-of-control (out-of-spec). The 

contribution of the J variables to the observed value of 2

1IT  or 1ISPE  helps to make a sound  

guess for the assignable causes of the abnormality (Nomikos, 1996). The use of contribution 

plots is the most common approach to detect the root cause of the problem. The contribution 

plots evaluate the contribution of each primary variable j to the relevant monitoring statistics, 

either T
2
 or SPE. When an anomaly is detected by the Hotelling statistics or the residuals, it is 

helpful to compare the contribution of every original variable to the relevant statistics with the 

usual value of the contribution in the NOC identified by the reference dataset. For this reason, 

the use of confidence bounds for the contribution to the Hotelling statistics and to the 

residuals were proposed (Conlin et al., 2000).  
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The contribution 
2

,

T

jic of every variable j to the 2

iT  for an observation xi is determined by the 

square root of the Hotelling statistics of equation (2.44):   

T2

1

,

2

ji

T

jic pt    .                                                                                                        (2.61) 

This is derived by the contribution t

jic , of every variable j to the scores that compose the 2

iT :  

jiiji pc ,, xt    ,                                                                                                             (2.62) 

where xi is the row vector of the X data matrix referring to the i
th

 observation, ti is the row 

vector referring to the i
th

 observation of the score matrix T, pj is the row vector referring to 

the j
th

 variable of the loading matrix P, pi,j is an element of P.  

Similarly, the contribution E

jic ,  of every variable j to the square predicting error SPEi of the i
th

 

observation is a single element ei,j of the residual matrix E:  

jiji ec ,,

E    .                                                                                                                 (2.63) 

The values of 
2

,

T

jic , t

jic , , and E

jic ,  describe how each variable contributes to the Hotelling 

statistics, to the scores and to the residuals, respectively, and can be positive or negative 

(Westerhuis et al., 2000).  

In summary, it is possible to collect the contributions of all the J variables for all the I

observations in the (I×J) X matrices of the contributions to T
2
 and SPE:  

JjIicT

ji

T ,,1 and ,,1    
22

,C    ,                                                                    (2.64) 

and:  

JjIic ji ,,1 and ,,1   ,

EEC    ,                                                                      (2.65) 

respectively.  

Based on the assumption that both the contributions 
2

,

T

jic  to the T
2
 statistics and the 

contributions 
E

jic ,  to the residuals are IID, the 100(1- )% confidence intervals for the 

contributions can be found by:   

2

22

2

lim, T
jc

T

j

T

j szcc    ,                                                                                            (2.66) 

E

EE

jcjj szcc
2

lim,    ,                                                                                               (2.67) 
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which are the upper (when the sign + is retained) and lower (when the sign - is retained) 

confidence bounds. The confidence limits of the contribution plots of equations (2.67) and 

(2.68) are calculated by the average contributions that a determined variable j assumes over 

all the I observations of the reference 
2T

jc  and E

jc :  

I

i

T

ji

T

j c
I

c
1

,

22 1
   ,                                                                                                        (2.68) 

I

i

jij c
I

c
1

,

1 EE    ,                                                                                                         (2.69) 

and the respective standard deviations 2T
jc

s  and E
jc

s :  

I

i

T

j

T

ji
c

cc
I

s
T
j 1

,

22

2

1
   ,                                                                                             (2.70) 

I

i

jjic
cc

I
s

j
1

,

1 EE
E    ,                                                                                               (2.71) 

where the mean values 
2T

jc  and E

jc  should be zero, because they should derive from standard 

normal distributions.  

Therefore, when the values of 2

1IT  or 1ISPE  exceed the respective confidence limits during 

the monitoring of a new observation xI+1, instead of considering the absolute value of the 

contributions, the relative size of the contribution have to be inspected (Choi and Lee, 2005), 

and this can be done by comparing the contribution of a single variable to the average 

contribution of the same variable in the reference NOC. The cause of the 2

1IT  or 1ISPE  

alarm can be diagnosed by comparing the current values of the contributions 
2

,

T

jic  or 
E

jic ,  to the 

respective limits for the entire set of the original variables j=1,…, J. In particular, if 

,,2

lim

2

1 IATTI  and a variable  j* (with j*=1,…, J) is found to satisfy:   

22

lim*,*,1

T

j

T

jI cc    ,                                                                                                     (2.72) 

then j* is the variable that “feels” the effect of the fault on 2

1IT . In the same way, if 

lim1 SPESPEI  and: 

lim*,*,1

EE

jjI cc    ,                                                                                                     (2.73) 

for a determined j*, the variable j* is suspected to be the variable which mainly affected by 

the root cause of the anomaly. When (2.73) or (2.74) are satisfied for more then one value of 

j*, this means that the effect of a certain fault distributes on different variables. This situation 
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can arise when the effect of the anomaly impacts on more than one variable. Otherwise, if the 

anomaly distributes on all the J variables, the variable with the highest contribution-to-

contribution limit ratio 
22

lim,,1

T

j

T

jI cc  or lim,,1

EE

jjI cc  is the most responsible for the 

perturbation of the system. Therefore, interrogating the relative contributions demonstrates to 

be one of the most powerful methods to get a diagnosis, whenever a fault is detected (Facco, 

2005; Choi and Lee, 2005). 

2.1.4 Enhancement for multivariate statistical methods  

In Chapter 1 it was mentioned that some of the main complications that may arise when 

dealing with data through multivariate statistical methods are: i) the varying nature of the data 

along time or space, and ii) the changeable correlation structure between data. In addition to 

being multivariate in nature, process data are often highly auto- and cross-correlated, and 

often non-linear. This situation determines that data are far from being normally distributed or 

independent either from other variables and from observations which are neighbour in 

time/space. For these reasons, the time/space varying nature and the change in the correlation 

structure of the data have to be taken into account. Furthermore, non-normally distributed 

input data make the application of the abovementioned control limits in the monitoring charts 

impossible.  

In particular, the methods described in the previews sections can be applied only to bi-

dimensional matrices X (I×J) and Y (I×Q) of IID data. These methodologies are good 

mathematical representation of the relationship between variables only when the correlation 

between the J variables remain the same throughout the evolution of a batch. It is often the 

case that data have a determined order in time or space. This adds a third dimension on the 

data array, and the variability in the third dimension should be considered, in addition to the 

correlation between variables. For example, in chemical batch processes the variables are not 

steady state, but show time trajectories. Another example is the one of images which can be 

represented by matrices of light intensities (also in different spectral channels), where 

neighbouring data (i.e. pixels) are correlated in space. In these examples, process/product data 

can be collected in 3D matrices X (I×J×Ki) or Y (I×Q×Hi), where I different batches (or 

different images) are treated as different observations, while time, space or different spectral 

channels represent the third dimension. Ki and Hi are the number of the samples collected 

along time (space) for the observation i, respectively in the matrix X and Y. Correlation is 

present in both the direction of the variables j (cross-correlation) and the direction of the 

time/space samples ki or hi (auto-correlation).  

Further complications are added when the 3D matrices X and Y have irregular shape, due to 

the differences in the number of samples (ki or hi) taken in time (or space). Moreover, the time 

trajectories of different processes variables or quality variables are sometimes not 
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synchronized between the I batches, or the spatial characteristics of an image are not aligned 

between the I observations, so sr KK  and sr HH  with sr , and r=1,…, I and 

Is ,,1 .  

To deal with the changeable nature of the correlation structure between data and the varying 

nature of the data, multi-way multivariate statistical techniques are commonly used.  

2.1.4.1 Multi-way methods, data unfolding and data synchronization/alignment

When the third dimension (i.e. time or space), is present in the data, and when the data 

collected in an ordered manner are assembled in regular 3D matrices X (I observations× J 

variables× K samples), the multi-way SPC (Nomikos and MacGregor, 1994) demonstrated to 

be a very effective strategy. Multi-way PCA (MPCA) and multi-way PLS (MPLS) are 

consistent with PCA and PLS, respectively, from both the mathematical and the algorithmic 

point of view. In fact, MPCA/MPLS have the same aims and benefits of PCA/PLS, because 

they are equivalent to perform PCA/PLS on enlarged 2D matrices derived by unfolding the 

3D data matrices: 

EPtX
A

r

rr

1

   ,                                                                                                      (2.74)  

where the tr’s are the score vectors, and the Pr’s are the loading matrices of the loading for all 

the J variables and all the K samples, the direction of maximum variability for every variable 

in every sample in time or space, and E is the residual matrix.  

“Unfolding” is a technique to derive 2D matrices by spreading out the original 3D matrices in 

a meaningful way to highlight the relevant variability to be inspected. Different unfolding 

methods were developed (Kourti, 2003), corresponding to different ways to unfold the 3D 

matrix, but two of them are the most significant (Figure 2.3):  

batch-wise unfolding (BWU);  

variable-wise unfolding (VWU).  

The BWU unfolding spreads out the 3D data in 2D matrices X
BWU

 that consider the 

time/space order of the data (Wise and Gallagher, 1996), putting the time slices of the original 

3D matrix side-by-side along the direction of the batches. Considering a 3D matrix X={xi,j,k} 

with i=1,…, I, j=1,…, J, k=1,…, K, where:  

the i
th

 horizontal slice Xi is the matrix of the trajectories of all the J variables in all the K 

samples in time or space for the observation (i.e. batch or image) i;  

the j
th

 vertical slice Xj is the matrix of the time/space evolution of the variable j for all the 

samples K and all the observations I;  

the k
th

 vertical slice Xk is the matrix of the time/space sample k for all the J variables and 

all the I observations.  
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Figure 2.3 Unfolding of the three-dimensional data matrix in both the variable-wise 

direction and the batch-wise direction.  

MPCA and MPLS can be performed using PCA and PLS respectively on the batch wise 

unfolded 2D matrix:  

Kkkk XXXX 21

BWU    ,                                                                                    (2.75) 

which is a (I×JK) matrix.  

Mean-centring the batch wise unfolded data matrix (i.e., subtracting the mean trajectory of 

each variable) removes the major non-linearity of the input variables (Nomikos and 

MacGregor, 1995b), summarizing the variability of the variables with respect to both the 

variables and their time/space evolution (Kourti and MacGregor, 1995). Accordingly, the 
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cross-correlation between variables is analyzed together with the auto-correlation in 

time/space within each variable. This means that, in the example of batch processes, the entire 

history of the batch is taken into account and the batch dynamics is properly represented into 

the model. In the example of the images, the spatial structure (or different spectral channels) 

are considered throughout the entire image in the BWU.  

Anyway, some difficulties arise in the realtime application of BWU to the case of batch 

processes, because data are collected sequentially and are available for the entire batch only 

after the completion of the batch itself. In fact, BWU is successfully applied to run-to-run 

monitoring and control strategies. However, when online applications are required some 

issues have to be faced. In fact, before batch completion BWU works well only if at least 10% 

of the batch history is already available (Nomikos and MacGregor, 1995b). Furthermore, 

BWU presents two main limitations about the data collected in real time:  

data are often not synchronized-aligned;   

data are not available for the entire batch to perform a sequential test during a batch run.  

The latter problem can be solved filling the incomplete matrix for the future unknown 

samples under three alternative hypothesis (Nomikos and MacGregor,1995a): 

the future samples conform to the mean reference conditions;  

the current deviation from the mean variables’ trajectory remain unchanged for the rest of 

the batch duration;  

using the ability of the PCA and PLS to handle missing data. The abovementioned 

methods to treat missing data can be used to this purpose.  

The synchronization of batches of uneven duration can be a very demanding issue. Using 

MPCA or MPLS on batch-wise unfolded data requires effective methods for the 

alignment/synchronization of the variables image features or time trajectories, stretching or 

shrinking the actual observation to the length of a reference one. The most popular 

synchronization methods are:  

the dynamic time warping (Kassidas et al., 1999);  

the indicator variable (Westerhuis et al., 1999).  

The VWU (Wold et al., 1987) represents the data in 2D matrices X
VWU

 (IK×J) that preserve 

the direction of the variables (Eriksson et al., 2001) and do not consider the data time or space 

order, because they are constituted putting the slices of the observations Xi of the original 3D 

matrix in vertical position one underneath the other:  

Ii

i

i

X

X

X

X
2

1

VWU    .                                                                                                       (2.76) 
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Using this procedure, it is neither necessary to estimate the future unknown part of the batch, 

nor to synchronize or to align the signals. The VWU approach is easier to implement online. 

However, if the variables do not consider the time/space order, the dynamics of the data is lost 

in batch processing, and the effect of the neighbourhood is lost in images. In summary, the 

auto-correlations are not considered in VWU. Furthermore, the VWU forces the correlation 

structure between data to be constant within the entire batch or image (Kourti, 2003). But 

considering a fixed and unchangeable correlation structure of the data is too a restrictive 

condition. Considering auto-correlation and the change of cross-correlation during time is the 

main difficulty of the VWU scheme.  

2.2 Multiresolution decomposition methods 

Multiresolution decomposition methods are techniques which transform a signal into a 

representation that is more useful and easily manageable (Addison, 2002). To perform this 

decomposition a transformation process is needed: the wavelet transform. This procedure 

entails the use of wavelet functions, which are localized waveforms that spread out the signal 

from the original domain to the domain of frequency. This means that it is possible to convert 

the signal in a series of profiles, which are more linear and more normally distributed.  

 
(a) 

 
(b) 

Figure 2.4 Example of “Mexican hat” wavelet (a) location in the domain and (b) dilation 

of the scale.   
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The wavelet transform mechanism entails the comparison between a wavelet of scale a and 

location b and an arbitrary signal x. To carry out a proper decomposition, the waveforms can 

be translated varying its location b (moved along the domain in which it is defined, i.e. time 

or space) or dilated varying its size a (shrinking or widening the wavelet) (Figure 2.4). The 

transform results in a positive contribution when the signal and the wavelet are both positive 

or both negative, while the transform is negative if the signal and the wavelet are of opposite 

signs (Figure 2.5). The higher the correlation between signal and wavelet is, the higher the 

absolute value of the transform is.    

 

 
Figure 2.5 Mechanism of transformation of a signal through  wavelet transform.  

This means that, when the signal trajectory has approximately the same shape and size of the 

wavelet profile in a determined location, the transform produce a large positive value, and 

vice versa when signal and wavelet are out-of-phase. As a consequence, the smallest size of 

the wavelet are correlated to the highest frequencies of the signal (i.e., noise), while the widest 

size of the wavelet are related to the long-term fluctuations of the signal, such as drifts or 

seasonal effects.  

Note that an advantage in the choice of multiresolution techniques is that the signatures of a 

signal in its domain (i.e. time or space) are maintained in the transformation of the signal from 

the original domain to the frequency domain. In fact, the transformed signal can be rebuilt 

preserving the time/space information (which is unfeasible, for example, in the Fourier 

transform).  

In the following sections the mathematical and algorithmic aspects of the wavelet transform 

are presented, together with their main applications.   

2.2.1 Continuous and discrete wavelet transform 

In mathematical terms, the wavelet transform is the convolution of a signal x with sba

*

, , the 

complex conjugate of a “mother” wavelet function ba, , integrated over the signal range:  
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sssxbaT ba d)()(),( *

,    .                                                                                        (2.77) 

where s  identifies the domain. The localized and normalized waveform of the mother 

wavelet is: 

a

bs

a
sba

1
)(,    ,                                                                                           (2.78) 

where a is a dilation parameter and b a location parameter. These family of translations and 

dilations is a basis of the Hilbert space of square integrable functions 2L .  

The transformation procedure compare the signal to the mother wavelet, shifting its location b 

and shrinking or stretching the scale a. If the signal and the wavelet are both positive or both 

negative in the original domain, the transform will be positive, otherwise it will be negative.  

The practical implementation of the wavelet transform entails the discretization of the scales a 

and of the step size between different locations b. The discretization can be given by: 

m

m

m
nm

a

anbs

a
s

0

00

0

,

1
)(    ,                                                                                (2.79) 

where n and m are integer parameters which respectively control the wavelet dilation and 

translation. The size of the translation step is mabb 00  and the transform becomes: 

nm

m

m

o

nm xsnbsa
a

sxT ,002/, ,d)(
1

)(    .                                                     (2.80) 

The inner products of x and nm,  are called detail coefficients Tm,n. The simplest and most 

efficient discretization is the so called dyadic grid. It generates orthonormal wavelets, where 

a0=2 and b0=1: 

nss mm

nm 22)( 2/

,    .                                                                                    (2.81) 

In a discretized wavelet transform there is a finite number of wavelet coefficients, which 

require the evaluation of an integral. After having passed the signal through the 

abovementioned high-pass filter nm, , another function nm,  (the so called “father” wavelet) 

is needed to avoid the numerical complication. The father wavelet have the same form as the 

mother wavelet:  

nss mm

nm 22)( 2/

,    ,                                                                                     (2.82) 
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which are orthogonal to its translation, but not to its dilation, and performs a low-pass filter, 

i.e. a scaling function, which establishes the multiresolution features of the wavelet 

decomposition. The convolution of the scaling function with the signal produces the 

approximation coefficients: 

snbsa
a

sxS m

m

o

nm d)(
1

)( 002/,    ,                                                                       (2.83) 

so that the continuous approximation of the signal at the scale m can be generated by 

summing a sequence of scaling function at the scale factored by the approximation 

coefficients: 

n

mnnmm sSsx ,,    .                                                                                            (2.84) 

This is an approximated, smoothed version of the original signal.  

Also the original signal can be rebuilt following the reconstruction representation of the 

inverse wavelet transform:  

sdsxsx mmm 1    .                                                                                          (2.85) 

The reconstruction has no redundancy, because of the normality of the wavelet. The term 

dm(s) is constituted of the detail coefficients at scale m: 

n

nmnmm sTsd ,,    .                                                                                           (2.86) 

The result is that a signal can be represented combining the approximation coefficients and 

the series expansion of the details: 

M

m n

nmnm

n

nMnM sTsSsx ,,,,                                                                (2.87) 

where M is an index of the chosen scale. For a signal of finite length Nx, xNM 2log  is the 

maximum number of scales which can be investigated with the dyadic grid discretization.  

In summary, the wavelet transform is a band-pass filter, which allows the components within 

a predefined and finite range of frequency to relapse into the detail coefficients at each scale 

(Addison, 2002). Namely, at each scale the original signal is increasingly cleansed by the 

higher frequency components, by means of two complementary filters: a low-pass filter and a 

high-pass one. From the numerical point of view, the wavelet pyramidal algorithm (Mallat, 

1989) decomposes a signal trajectory sequentially in a series of approximated versions of the 
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profile (lower frequency scales) and details (higher frequency scales), iterating the procedure 

at every decomposition level. 

 

 
Figure 2.6 Schematic diagram of the algorithm for the wavelet transform filtering.  

Passing through the filters, the original signal is split into two parts: the approximation (which 

retains the high scale and low frequency part of the signal), and the detail (which summarizes 

the high frequency, low scale part). In this way the original signal can be studied at different 

resolution scales, or denoised and detrended in a meaningful manner.  

 

     
(a) 

   
(b) 

Figure 2.7 Wavelet signal filtering: (a) down-sampling associated to the signal wavelet 

filtering and (b) up-sampling associated to the signal reconstruction from approximations 

and details. 
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Note that, when the signal is convolved with a low-pass filter (moving the filter along the 

signal step-by-step of the discretized domain) a dyadic down-sampling is applied: the signal is 

down-sampled by a factor 2 generating the approximation, that contains the odd elements of 

the signal. The signal is also convolved with a high-pass filter and down-sampled to form the 

detail that contains the even elements of the signal (Figure 2.7).  

The down-sampling retains only the odd elements of the for the approximation only the and 

for the detail only. This means that the approximation and the detail at scale m+1 are half of 

the dimension of the signal at scale m. In the signal reconstruction from scale m to scale m+1, 

the filtering process is reversed, feeding back the larger scales components (approximations 

and details) through the filter, which up-samples the scales components approximation and 

detail and assemble them re-building the original signal. In mathematical terms this is an 

inverse wavelet transform.  

Different types of wavelet are available for signal transformation: mexican hat wavelet (the 

second derivative of a Gaussian distribution function); Haar wavelet (the most effective for 

the representation of the discontinuities); Daubachies wavelets (the most frequently used in 

the texture analysis; Salari and Ling, 1997); etc.... What can be inferred by the literature is 

that the selection of the most proper wavelet is case sensitive, but it is suggested (Ruttiman et

al., 1998) the use of wavelets that:  

determine limited phase distortion;  

maintain a faithful localization on the domain;  

de-correlate the signal in a sensitive manner for both the smooth features and 

discontinuities.  

Also the choice of the proper decomposition scale is case sensitive. However, some general 

methodologies to select the most relevant scales are available in literature, such as the 

comparison of some statistical indices in different scales of resolution derived by the signals 

and the respective approximations (moments, entropy, skewness, kurtosis, etc…; Addison, 

2002).  

2.2.1.1 Bi-dimensional wavelet transform

In many applications (e.g. image analysis) the dataset is a 2D matrix in the domain of the 

variables 2
s  (Mallat, 1989). The wavelet transform can be used either to compress the 

data in a meaningful manner, or to perform a multiresolution characterization of the matrix. In 

both the cases, two-dimensional wavelet transforms are required.  

The two-dimensional wavelet transforms can be generated by the tensor product of their 

mono-dimensional orthonormal counterparts (Addison, 2002), using the same scaling 

procedure as the one-dimensional scale on both the rows and the columns of the data matrix.  
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Figure 2.8 Schematic diagram of the matrix manipulation to decompose the 2D array on a 

bi-dimensional grid through wavelet transform.  

Two-dimensional scaling and wavelet functions can be defined as:  

2D scaling function:  

21 sss    ;                                                                                                    (2.88)  

2D horizontal wavelet (in the sense of the rows):  

21

h sss    ;                                                                                                  (2.89) 

2D vertical wavelet (in the sense of the columns):  

21

v sss    ;                                                                                                  (2.90)  

2D diagonal wavelet:  

21

d sss    ;                                                                                                 (2.91)  
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where s1 and s2 are elements of the 2D domain defined by all the 2
s  (e.g., spatial 

coordinates of images). Accordingly, the multiresolution decomposition can be expressed as:  

1 2
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SbbT

SbcT

ScbT

SccS

                                                                    (2.92) 

where k1 and k2 are scaling coefficients and n1 and n2 are location indices.  

The general idea of a 2D wavelet decomposition is shown in Figure 2.8. After the first 

decomposition, the original data matrix X0 is split into four distinct sub-matrices: an 

approximation S1; an horizontal detail h

1T ; a vertical detail v

1T ; and a diagonal detail d

1T . In 

the next decomposition scale, the details are left untouched, and the next iteration decomposes 

only the approximation S1. The transformation at scale m=2 decomposes S1 in a new 

approximation S2 and the details h

2T , v

2T  and d

2T . This procedure can be iterated M times for 

a (2
M

×2
M

) matrix, where the dimension of the matrices Sm, h

mT , v

mT  and d

mT  is down-sampled 

to (2
M-m

×2
M-m

).  

Once more, the original matrix can be reconstructed as:  

M

m

mmmM

1

dvh

0 DDDXX    ,                                                                              (2.93) 

where the matrix XM is the smooth version of the original matrix at the largest scale index M, 

while the h

mD , v

mD  and d

mD  are the reconstruction of the details from the coefficients in h

mT , 
v

mT  and d

mT , respectively.  




